求幂级数(x^n)⼀n的和函数,,高手帮帮我!!急

∑(n=1,∝)
2025-12-25 08:45:59
推荐回答(2个)
回答1:

设S(x)=∑(x^n)/n ,由系数比值法易求出收敛域为 [-1,1)
求导,得 S'(x)=∑x^(n-1) ,此为几何级数
所以 S'(x)=1/(1-x)
两端求定积分,积分限取为0和x
则得S(x)-S(0)=-ln(1-x)
在原级数中,令x=0,得S(0)=0
所以S(x)=-ln(1-x) ,x ∈ [-1,1)

回答2:

∑(n=1,∝)(x^n)/n=s(x)
s'(x)=(∑(n=1,∝)(x^n)/n)'
=∑(n=1,∝)[(x^n)/n]'
=∑(n=1,∝)x^(n-1)
=1/(1-x) (|x|<1)
s(x)=∫(0,x)1/(1-x)dx
=-ln(1-x) (-1<=x<1)