圆周率不是有理数,是超越数。
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积 。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
刘维尔数证明后,许多数学家都致力于对超越数的研究。1873年,法国数学家埃尔米特(Charles Hermite,1822—1901)又证明了自然对数底e的超越性,从而使人们对超越数的认识更为清楚。1882年,德国数学家林德曼证明了圆周率也是一个超越数(完全否定了“化圆为方”作图的可能性)。
在研究超越数的过程中,大卫·希尔伯特曾提出猜想:a是不等于0和1的代数数,b是无理代数数,则a^b是超越数(希尔伯特问题中的第七题)。
这个猜想已被证明,于是可以断定e、π是超越数。
超越数的存在是由法国数学家刘维尔(Joseph Liouville,1809—1882)在1844年最早证明的。关于超越数的存在,刘维尔写出了下面这样一个无限小数:a=0.110001000000000000000001000…,并且证明取这个a不可能满足任何整系数代数方程,由此证明了它不是一个代数数,而是一个超越数。后来人们为了纪念他首次证明了超越数,所以把数a称为刘维尔数。
圆周率实指是π,π=3.141592653...,所以圆周率是无理数
圆周率现在人们都认为是无理数,但世界并不是绝对的。虽然我这样说,但电脑可以把圆周率算到小数点N位后的数了,还没发现是有理数。所以人们很难证明圆周率是有理数
不能说是无理数或是有理数 现在世界上还在证明 好象是证到1000多万位了 目前是认为它是一个无理数
有理数的范围:整数和分数统称有理数。
圆周率不是整数,目前的计算水平也不能把它写成一个分数,
还认为是无理数。